Вирусы и другой вредоносный код



         

SIR модель и её варианты - часть 2


                                          (6)

и условие развития эпидемии (5) сохраняется.

r(t) = 1 – exp(–gt), откуда вытекает, что при достаточно большом времени любую эпидемию теоретически можно вроде бы и преодолеть. Проблема заключается только в том, что это время может оказаться неприемлемо большим.

Рис. 3. Динамика развития эпидемии в системе (6) при сравнительно малой начальной зараженности сети (10–7). При b/g  < 15 вспышка не происходит.

Рис. 4. Динамика развития эпидемии в системе (6) при значительной начальной зараженности сети (10–4). В этом случае пороговое значение b/g  < 9.

Как видно из Рис. 3 и 4 при «вакцинации» уязвимых узлов для заметной эпидемической вспышки необходимо, чтобы скорость инфицирования превышала скорость иммунизации на два порядка и более, для того, чтобы за время порядка 1/g  был пройден порог вспышки iпор. Пока что это не слишком обременительное условие для вирусописателей. Возможным выходом оказалась бы автоматизация процессов устранения уязвимостей. Она могла бы стать существенным фактором ограничения эпидемических рисков, конечно при условии, что черви не смогут блокировать систему обновления ОС, а сами автоматически устанавливаемые «заплаты» не будут нарушать работоспособность иммунизируемой системы и создавать в ней новые опасные уязвимости.

На практике же иммунизация незараженных узлов осуществляется гораздо медленнее, согласно принципу «пока гром не грянет». К тому же часть машин, на которых червь уничтожается, так и остаются «незалатанными», а при расширении Сети появляются новые узлы, «уязвимые» по умолчанию. Поэтому повторные эпидемические вспышки могут происходить с завидной регулярностью.

Динамика системы с переменным числом узлов будет определяться скоростью прироста новых уязвимых (S) узлов a:




Содержание  Назад  Вперед